An Efficient Algorithm for Contact Angle Estimation in Molecular Dynamics Simulations
نویسنده
چکیده
It is important to find contact angle for a liquid to understand its wetting properties, capillarity and surface interaction energy with a surface. The estimation of contact angle from Non Equilibrium Molecular Dynamics (NEMD), where we need to track the changes in contact angle over a period of time is challenging compared to the estimation from a single image from an experimental measurement. Often such molecular simulations involve finite number of molecules above some metallic or non-metallic substrates and coupled to a thermostat. The identification of profile of the droplet formed during this time will be difficult and computationally expensive to process as an image. In this paper a new algorithm is explained which can efficiently calculate time dependent contact angle from a NEMD simulation just by processing the molecular coordinates. The algorithm implements many simple yet accurate mathematical methods available, especially to remove the vapor molecules and noise data and thereby calculating the contact angle with more accuracy. To further demonstrate the capability of the algorithm a simulation study has been reported which compares the contact angle influence with different thermostats in the Molecular Dynamics (MD) simulation of water over platinum surface.
منابع مشابه
A new algorithm for contact angle estimation in molecular dynamics simulations
It is important to study contact angle of a liquid on a solid surface to understand its wetting properties, capillarity and surface interaction energy. While performing transient molecular dynamics (MD) simulations it requires calculating the time evolution of contact angle. This is a tedious effort to do manually or with image processing algorithms. In this work we propose a new algorithm to e...
متن کاملWettability of boron monolayer using molecular dynamics simulation method
Over the past years, two-dimensional materials such as graphene, phosphorene, silicene, and boron-nitride have attracted the attention of many researchers. After the successful synthesis of graphene, due to its many new applications, researches began to produce nanosheets from other elements, and among these elements, boron was one of the options. In the periodic table of elements, boron is ahe...
متن کاملComputational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels
In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...
متن کاملModifications of Internal Molecular Structures of Asphalt Components Due to Physical Aging
The internal structure of a molecule can be presented in terms of intra-molecular (i.e., inter atomic)and inter-molecular energies such as van der Waals, bond and bending, torsion, and inversion energy.In this study, changes in molecular energies of individual asphalt components are evaluated as afunction of physical aging factors. The factors for physical aging such as temperature and pressure...
متن کاملTemperature Effect on Mechanical Properties of Top Neck Mollusk Shells Nano-Composite by Molecular Dynamics Simulations and Nano-Indentation Experiments
Discovering the mechanical properties of biological composite structures at the Nano-scale is much interesting today. Top Neck mollusk shells are amongst biomaterials Nano-Composite that their layered structures are composed of organic and inorganic materials. Since the Nano indentation process is known as an efficient method to determine mechanical properties like elastic modulus and hardness ...
متن کامل